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Independent Component Analysis (ICA)

Interactive Lecture
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Launch polling system

https://participant.turningtechnologies.eu/en/join

Acces as GUEST and enter the session id: appliedml2020
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ICA-sound/source1.wav
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But at each time step of the recording, we obtain a new observation 

of both mixtures and sources.
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If we do T measurements, the total dimension of the dataset is 

X: N T

N-dimensional observation vector  and sources s , 3.N Nx N  =
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Source 1: S1 Source 2: S2

ICA: Application to Image Decomposition
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Mixture 1: X1 Mixture 2: X2

ICA: Application to Image Decomposition
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Reconstructed source  S1 Reconstructed source S2 

ICA: Application to Image Decomposition
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Mixed Signal
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Which of the following statements are true?

A. The independent components are unique.

B. The components can be ordered according to their (statistical) importance. 

C. The amplitude of the independent components (vectors norm) is unknown.

D. The sign of the independent components (vectors) is unknown.
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ICA: Limitations
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ICA: Finding mixing matrix - intuition
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Estimated Sources
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One of the original and estimated 

source is inverted! 
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Estimated Sources
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The ordering is inverted! 

Solution after another ICA run
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ICA searches projections such that the distribution of the projected dataset is 

A. closer to a Gauss distribution

B. is statistically independent

C. is uncorrelated
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ICA: Optimization
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Which of the following statements are true?
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Statistical independence ensures uncorrelatedness. 

The converse is not true

Independent Uncorrelated
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Statistical Independence and and uncorrelatedness
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A. The distribution of the observables (mixed variables) follows a Gauss 

distribution.

B. The distribution of the sources follows a Gauss distribution.

C. The dimension of the sources equals the dimension of the observables.

D. The distribution of the observables is centered and white.
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ICA Optimization: Assumptions

B: If it is known that number of sources is smaller, 

apply PCA on the observables and reduce

dimensionality to expected sources’ dimension.
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Which of the following statements are true?
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Why Gaussian distributions for sources are forbidden 

A fundamental restriction in ICA is that 

the independent components must be non-Gaussian. 

The joint density is completely symmetric. Therefore, it does not contain any 

information on the directions of the columns of the mixing matrix! 

→ The mixing matrix cannot be estimated 

Assume that the mixing matrix is orthogonal and the si are Gaussian. 

Then x1 and x2 are also Gaussian, uncorrelated, and of unit variance. 

Their joint density is given by:
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ICA: Preprocessing Steps – Summary

❖ Centering → Both the dataset and the sources (latent components)  are zero 

mean.

❖ Whitening → Find out projections that embed correlations through PCA. 

Project onto PCA basis and scale data to unit variance. The dataset is now 

uncorrelated; its variance is 1 along all dimensions. 

→ Simplifies computation of the independent components (Kurtosis computation)
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ICA: Hypotheses & Identification of 

Independent Components – Summary

❖ Sources and data have the same dimension. 

→ The unknown mixing matrix is square. If this is not the case, use PCA to 

reduce the dimension of the sources and by extension the ICA components.

❖ The sources are assumed to be statistically independent. They also must 

follow a non-Gaussian distribution. If so, a measure of non-Gaussianity is an 

indication that the sources are close to be statistically independent sources.

       

       → Optimize non-Gaussianity measure for the distribution of the sources.

       → Find the sources iteratively, one projection at a time.

MACHINE LEARNING I



APPLIED MACHINE LEARNING

Kurtosis / Entropy Value for 

Gauss Distributions
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ICA uses either Kurtosis or Negentropy to find independent components. It uses the 

fact that these two measures have explicit bounds for the equivalent Gauss distribution.

Kurtosis:

The kurtosis for the Gauss distribution has a closed-form expression and is equal to 

3.0.  

Note that, in this course, we follow computer vision standard and assign zero for the 

kurtosis of the normal distribution by substracting 3.0 from the kurtosis.

Entropy:

The entropy of a Gauss distribution is larger than that of any other distribution. 

Moreover, it has a closed-form solution, see exercise session. 

Hence, ICA Maximizes Neg-Entropy! 
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Real sources 

pdf is non-Gaussian
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Real sources 

pdf is non-Gaussian
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Pdf of Mixtures are closer to a Gauss distribution
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Pdf of Mixtures are closer to a Gauss distribution
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